Stick-Slip Mitigation

©2011 Best-drilling-practices.tk. All rights reserved.

Stick-slip Mitigation Option Tree

Cutters & Blades

- More blades and smaller cutters
 - More blades mean load better distributed over more cutters
 - ✓ With larger cutters, depth of cut is deeper, giving a higher Torque response
 - ✓ With smaller and more cutters, depth of penetration is smaller, which gives a lower Torque response

Back-rake Angle

- Increase cutter back-rake angle
 - ✓ Back rake angle typically varies between 15 to 45 degrees (angle from vertical)
 - Lower back rake angle, larger depth of cut, more aggressive = higher Torque and potential for Stick-slip
 - ✓ Higher back rake angle, less aggressive = lower Torque
 - Higher angle gives smaller vertical and higher horizontal component of force, so less potential for stick-slip

Depth of cut limiters

> Depth of cut limiters / Hybrids

- Depth of cut limiters "limit" the cutter penetration into the formation, thereby decreasing Torque
- When mitigating stick-slip with depth of cut limiters, DO NOT reduce WOB as per usual guidelines – actually, increase WOB to bury the cutters and allow the limiters to do their job

Tapered Gauge

> Tapered gauge

 Tapered gauge will help decrease the Torque generated at the upper gauge pad area, allowing the cutters only to generate Torque

©2011 Best-drilling-practices.tk. All rights reserved.

Insert Bit

- Change to Insert bit
 - Roller cone insert bits have a different cutting action than PDC bits, which cut by shearing and can generate high Torque
 - ✓ Insert bits cut by rolling and crushing actions and do not generate as much Torque

Undergauge Stabilizers

- Use undergauge stabilization 1/16" to 1/8"
 - As well as helping with directional control, using undergauge stabilizers help reduce borehole wall contact and resultant friction forces
 - ✓ Gauge stabilizers increase friction factors and will help increase stick-slip levels due to interactions with the wellbore

Stabilizer Types

- Use spiral Integral blade stabilizers instead of welded, straight blade stabilizers
- Use melon-profile stabilizers instead of stabilizers with 90degree or high angle leading edges
 - Smoother angle and profile helps reduce chance of generating shocks and stickslip when interacting with formations, formations changes, ledges, etc

Flex Collar

- Flex collars have been known to generate stick-slip due to their flexibility
 - ✓ Only use Flex collars when directional responses in an area/well are unknown, or you need DLS >3 degrees/100ft

Reduce Stabilization

- Keep the number of stabilizers to a minimum, just enough to accomplish your directional goals
 - ✓ Dropping the stabilizer above the MWD collar has been observed to reduce stick-slip – in most cases, high MWD shocks do not decrease because of this, but MWD shocks have increased in some other cases – use a rigid-mount collar to offset MWD shock generation if you drop the stabilizer
 - ✓ Less stabilization means less borehole wall contact, less friction forces, less torque and thus the less chance to generate stick-slip

Roller Reamers

Add a roller reamer

- ✓ Adding a roller reamer will reduce BHA to borehole friction and torque and thus reduce the chance for stick-slip generation
- Note that some operators do not like to use roller reamers due to their sometimes short bearing life and propensity to come apart downhole

Increase RPM

- Increasing RPM will help increase the drillstring inertia and help overcome the formation friction factor
- Remember that changing RPM and WOB to reduce stick-slip can initiate other even more destructive vibration types, such as BHA whirl
- > Try to optimize RPM/WOB to maximize ROP

Reduce WOB

- Reducing Weight On Bit pulls the cutters out of the formation a little, thereby reducing torque and side forces on the BHA
- Reducing WOB will often result in a decrease in ROP?
- Remember that changing RPM and WOB to reduce stick-slip can initiate other even more destructive vibration types, such as BHA whirl
- Try to optimize RPM/WOB to maximize ROP

Pick up off bottom

- Picking up off bottom and stopping the drillstring is often the cure when stick-slip levels are severe.
- Reducing WOB will often result in a decrease in ROP, which will not make the client happy?
- > Try to optimize RPM/WOB to maximize ROP

On/Off bottom Procedure

Actions to Address Drill String Vibrations				
Condition	RPM	WOB	Flowrate	Complete Action and Comments:
Shutting Down for a Connection	Reduce RPM to between 60 to 80.	Drill off to 50% of drilling ¥0B	Shut Do y n Pumps.	 Reduce RPM to between 60 to 80, Drill off to 50% of Drilling VOB, and Stop Rotary and Lift Off Bottom. Make the Connection.
Starting Up after a Connection.	Start the rotary between 60 and 80 RPM.	Slowly Increase VOB to target drilling value	Bring Pumps up gradually to drilling value	 Start the rotary between 60 & 80 rpm, Place the bit on bottom, Slowly increase VOB to target drilling value, CAUTION: Take Care not to initiate Stick / Slip, Increase RPM to the target drilling value.
Reaming Guidelines	Use Io v RPM	Use minimal ¥0B	No Change	 Use minimal WOB while reaming, Control reaming penetraton rate to below 50% of the normal drilling penetration rate, Ensure the bit torque does not exceed 50% of the normal drilling torque for that bit and formation, Keep reaming speed below 35 fpm, and Use low rpm to minimize vibration levels while monitoring RT shock measurements.
Bit Break-in Procedure	Start the RPM at half the target drilling rate	Begin drilling with low VOB <6K for 2 to 3 feet.	Target Drilling Flowrate	 Start the RPM at half the target drilling rate, 2. Tag Bottom, PU 1 foot off bottom & circulate for 5 minutes. Begin Drilling with low VOB & drill 2 - 3 feet. (no more than 500 psi of bit diameter 6K VOB) Increase the VOB to target drilling value, then 6. Increase the RPM. CAUTION: Take Care not to induce Stick Slip or Azial & Lateral Vibrations

Hole Cleaning

- Poor hole cleaning, especially in wells with angles of 35-65 degrees, can help induce stickslip
- Cuttings can build up around the BHA, especially the stabilizer blades, binding the drillstring and causing stick-slip

Stick Slip caused by borehole cleaning

Mud Lubricity

- Increasing the lubricity of the mud will help "slick up" the hole and reduce stick-slip tendencies
 - Try to use liquid lubricants where possible, in water-based muds

 avoid solids such as beads to avoid any downhole tool
 jamming issues
 - ✓ Increasing oil percentage can help
 - ✓ In some cases with oil-based muds, stick-slip can be accelerated by the extreme "slickness" of the mud system